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Postgres backups

1. How to test them
2. How to make sure we test them



A bit about me (Nick Meyer)

● https://github.com/aristocrates
● Team lead of Platform Engineering
● Areas of focus

○ Developer experience
○ Interface: application and infra
○ Data layer
○ Postgres

https://github.com/aristocrates


Academia.edu

● https://www.academia.edu/about
● We’re hiring!
● Our goals

1. Ensure that every paper ever written is:
✓ on the internet
✓ available for free

2. Accelerate the world’s research
● Some stats

1. 50 million papers uploaded
2. 20 million paper recommendations per day

https://www.academia.edu/about


Quick poll

● DB as a Service
○ RDS/Aurora, GCP Cloud SQL, Azure/Cosmos DB

● Infra as a Service
○ EC2 instance, or VMs on GCP/Azure/etc
○ ansible/chef/puppet/shell scripts

● On-prem



Our old postgres backup solution

● ~100TB across ~15 “clusters” (AWS EC2 + some RDS)
● (EC2) All backed up by: a Ruby script

○ (that wrapped pg_basebackup)

● A great way to learn about backups…
● … but a bad idea otherwise



“A practical guide”



Roadmap

1. Motivation
2. How to test
3. Measurable goals
4. How to hold ourselves accountable for testing
5. Monitoring



What could go wrong?
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What could go wrong: Several nodes

● What if all nodes go down?
● Some nodes go down: all good?

postgres

postgrespostgres

us-east-1

us-west-2



What could go wrong: Several nodes

● What if all nodes go down?
● Some nodes go down: all good?
● DELETE FROM users;
● DROP TABLE users;

postgres

postgrespostgres

us-east-1

us-west-2



What could go wrong: Several nodes and backups

postgres

postgrespostgres

us-east-1

us-west-2

BackupsS3 bucket



What could go wrong: Several nodes and backups

postgres

postgrespostgres

us-east-1

us-west-2

S3 bucket Restore?



Schrödinger’s Backup:
“The condition of any backup is 

unknown until a restore is 
attempted.”

—Spotlight on IT series #212, 
Spiceworks 2013

https://community.spiceworks.com/t/schrodinger-s-backup-when-good-documentation-goes-bad/225024


Backup failures that I have witnessed in prod

1. Backups just weren’t happening

🤖😴



Backup failures that I have witnessed in prod

1. Backups just weren’t happening
2. “Successful” backups in s3 that are just an empty file

👍✅              🗑  👀‼



Backup failures that I have witnessed in prod

1. Backups just weren’t happening
2. “Successful” backups in s3 that are just an empty file
3. 😱 Looked good, but postgres never finished starting…

🤖❄



How do we test restores?
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Bring up a streaming replica

(new)
postgres

(new)
postgres

(new)
postgres

postgres

3
$PGDATA
└── base

WAL21



Step 0: Bring up infrastructure



Step 0: Bring up infrastructure

● A lot of failures happen here
● Great news!
● Your backups might still be valid



Step 1: restore $PGDATA snapshot

pgbackrest restore [args]

(new)
postgres

$PGDATA
└── base1



Step 1: restore $PGDATA snapshot

1



Step 1.5: Set up configs

● postgresql.conf
● pg_hba.conf
● TLS (ssl_cert_file, ssl_key_file, ssl_ca_file)



Step 2: Replay WAL to catch up

Start postgres

(new)
postgres

WAL2



Aside: the role of WAL
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Write-Ahead Log (WAL)

INSERT INTO users(id, name) 
VALUES (1, “Nick”);



Write-Ahead Log (WAL)

shared memory
(shared_buffers)

To: client

OK, I committed 
the transaction

1

WAL file2

3



Write-Ahead Log (WAL) -> “Checkpointing”

postgres
$PGDATA
└── base

Last 
checkpoint

Current 
time

WAL



Write-Ahead Log (WAL)

shared memory
(shared_buffers)

To: client

OK, I committed 
the transaction

1

WAL file2

3

4 WAL file

archive_command



</aside>
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Step 2: Replay WAL to catch up

Start postgres

1. Needs to reach “initial consistency”
a. The snapshot of $PGDATA is not useful 

without WAL from start to finish

2. Catches up with all WAL written 
after the backup finished

(new)
postgres

WAL2



Step 2: Replay WAL to catch up

● Look for the “slopes of catching up”
○ This comes after initial consistency is reached

(Reaching 
Consistency)



Step 3: Start replicating

● primary_conninfo
● Replicate without error: good sign
● This is (probably) enough

(new)
postgres

postgres

3



Step 4: Spot-check some data

● “heartbeats” table good for this
○ You can watch it update

(new)
postgres

postgres

4



If this is not a drill, skip steps 3 and 4

● Hopefully you tested restores

(new)
postgres

postgres

Application



What goals should we set?
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RPO and RTO

● How much data loss?

➢ Recovery Point Objective (RPO)

● How long until we’re back?

➢ Recovery Time Objective (RTO)



Recovery Point Objective (RPO)
RPO: 4 hours of data 
loss “acceptable”

Sunday Monday

02:0000:0022:0020:0018:00 06:0004:00 10:0008:00

Everything is ok… Still ok… The Future

Current timeLast restorable point



Recovery Point Objective (RPO)

Sunday

02:0000:0022:0020:0018:00 06:0004:00 10:0008:00

Everything was ok Data loss Outage Now ok (but lost some data)

Disaster

Monday

Last restorable point



Recovery Point Objective (RPO)
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Recovery Time Objective (RTO)

Sunday

02:0000:0022:0020:0018:00 06:0004:00 10:0008:00

Everything was ok Data loss Outage Now ok (but lost some data)

Disaster

Recovery time

Monday

Last restorable point



Point-in-time Recovery (PITR) with WAL

02:0000:0022:0020:0018:00 06:0004:00 10:0008:00

Everything was ok WAL records Outage Now ok (minimal/no data loss)

Disaster

Recovery time

Better recovery point

Last backup

Sunday Monday

WAL



Physical vs Logical

$PGDATA
└── base

└── 16388
    └── 1247

0100100001101001…

pg_dump

SELECT … FROM users WHERE …
INSERT INTO users VALUES …

logical

physical Write-ahead log



Physical vs logical

● Backups are faster, more frequent
● WAL => better RPO, continuous PITR
● Restores are faster => better RTO



“Super physical”

logical

physical

“super 
physical”

postgres

ZFS

LVM

EBS 
snapshots

Filesystem / 
block device 
snapshots



Physical vs “super physical”

● “Super physical”: can use with e.g. MySql too
● Physical: Less fragile

○ CREATE TABLESPACE …
● Better postgres tooling for physical
● Physical has PITR, does “super physical”?



● For a 15 TB DB @ Academia:

Some of our specific numbers

Objective Target

Recovery Point Everything*

Recovery Time 6 hours**

Point-in-time 1 month

* Allowance for several seconds to several minutes
** Multiply by 3 in full disaster (restore from nothing)



Holding ourselves 
accountable
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How to make sure we test restores

1. Every time you need a new replica, use your backups
a. If you never/rarely need new replicas, bring one up for fun

2. When you need to test, bring up a copy in staging
a. Restore some point in time other than latest



Business need #1: Need for reads

1. Every time you need a new replica, use your backups
a. If you never/rarely need new replicas, bring one up for fun

➢ When backups break:
✓ You will notice
✓ Fixing will be a priority

(new)
postgres

(new)
postgres

1

postgres
replication

restore

2



Business need #2: QA

2. Bring up a copy of prod in a staging environment
a. Restore some point in time other than latest

➢ Confirm:
✓ You can restore from nothing
✓ You can restore earlier points in time



How often?

0 -> once

once -> yearly

yearly -> monthly

(etc)



Monitoring
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Good monitoring

Loud when it needs to be

🚨: 📣🔊



Great monitoring

Quiet the rest of the time

✅: 🤫😴



How to notice when restores are failing?

● Alerts?
● Dashboards?



Slack bot (failure)



Slack bot (success + recovery time)

~6 hours



The search for leading indicators

● Restores are what we care about
● Broken restores = lagging indicator of broken backups
● Are there any leading indicators to monitor?



pgbackrest info command: pipe to head

postgres@host $ pgbackrest info | head
stanza: news

status: ok
cipher: [value]

[...]

��



pgbackrest info command: pipe to tail

postgres@host $ pgbackrest info | tail

[...]

    full backup: 20240309-181002F

        timestamp start/stop: 2024-03-09 18:10:02 / 
2024-03-09 18:10:45

        wal start/stop: 00000002000003D1000000BB / 
00000002000003D1000000BB

        database size: 2.9GB, database backup size: 2.9GB

        repo1: backup set size: 696.8MB, backup size: 696.8MB



Check S3: is anything there?

✅



WAL archiving stats: throughput, failures



WAL archiving stats: throughput, failures



WAL archiving stats: throughput, failures

Why is this non-zero?
archive-async is complicated…



Recap
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Summary

● Every time you need a replica, use your backups
○ “Bring up the infrastructure” is what usually fails

● Periodically test a cold-restore in QA/staging
● Visualize the restore process
● Make sure your monitoring pulls its weight



Summary

● Every time you need a replica, use your backups
○ “Bring up the infrastructure” is what usually fails

● Periodically test a cold-restore in QA/staging
● Visualize the restore process
● Make sure your monitoring pulls its weight

Questions?
https://github.com/aristocrates

https://github.com/aristocrates


Appendix
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(There’s definitely no time for this, but if you’re 
reading this after the conference, enjoy!)



Sidenote: streaming replication

● This talk assumes some familiarity with:
○ Streaming replication in postgres

■ “Binary compatibility”
■ Read-only replicas, HA replicas

○ The Write Ahead Log (WAL)
■ (at a high level)

● Some resources:
○ pgBackRest User Guide
○ Dude, where's my byte? | SCaLE 17x

■ (recording, youtube)

postgres

postgres

$PGDATA
└── base

└── 16388
    └── 1247

0100100001101001…

https://pgbackrest.org/user-guide.html#concept
https://www.socallinuxexpo.org/scale/17x/presentations/dude-wheres-my-byte
https://www.youtube.com/watch?v=ciUSdnWRSrk&t=19010s


“Replication heartbeats”

8/5



replication_heartbeats

● Sometimes the built in Datadog metric has issues
○ (Not always recognized until the first time a replica catches up)

● So we have a secondary system to fill in the gaps



replication_heartbeats

CREATE TABLE public.replication_heartbeats (

  created_at TIMESTAMP WITHOUT TIME ZONE PRIMARY KEY DEFAULT now()

);

● Cron job to insert the current time
● Metric: diff against replica system time
● Sloppiness aside…

○ time zones
○ NTP point of failure

● … it works pretty well in practice



replication_heartbeats



replication_heartbeats


