
Testing your
PostgreSQL backups

(a practical guide)
Nick Meyer

Staff Software Engineer, Academia.edu
PGConf NYC 2024

Testing your
PostgreSQL backups

(a practical guide)

Google Chrome requires an update

The application Google Chrome needs to be
updated to version 123.0.6312.59. Clicking
Update Now will quit Google Chrome.

You have no remaining postponements and must
update now.

Update will start in 1:56:56

Update Now

Nick Meyer
Staff Software Engineer, Academia.edu

PGConf NYC 2024

Google Chrome requires an update

The application Google Chrome needs to be
updated to version 123.0.6312.59. Clicking
Update Now will quit Google Chrome.

You have no remaining postponements and must
update now.

Update will start in 1:56:56

Update Now

1972: The “Blue Marble” (Apollo 17)
Image Credit: NASA

Postgres backups

1. How to test them
2. How to make sure we test them

A bit about me (Nick Meyer)

● https://github.com/aristocrates
● Team lead of Platform Engineering
● Areas of focus

○ Developer experience
○ Interface: application and infra
○ Data layer
○ Postgres

https://github.com/aristocrates

Academia.edu

● https://www.academia.edu/about
● We’re hiring!
● Our goals

1. Ensure that every paper ever written is:
✓ on the internet
✓ available for free

2. Accelerate the world’s research
● Some stats

1. 50 million papers uploaded
2. 20 million paper recommendations per day

https://www.academia.edu/about

Quick poll

● DB as a Service
○ RDS/Aurora, GCP Cloud SQL, Azure/Cosmos DB

● Infra as a Service
○ EC2 instance, or VMs on GCP/Azure/etc
○ ansible/chef/puppet/shell scripts

● On-prem

Our old postgres backup solution

● ~100TB across ~15 “clusters” (AWS EC2 + some RDS)
● (EC2) All backed up by: a Ruby script

○ (that wrapped pg_basebackup)

● A great way to learn about backups…
● … but a bad idea otherwise

“A practical guide”

Roadmap

1. Motivation
2. How to test
3. Measurable goals
4. How to hold ourselves accountable for testing
5. Monitoring

What could go wrong?

1/5

What could go wrong: Several nodes

● What if all nodes go down?
● Some nodes go down: all good?

postgres

postgrespostgres

us-east-1

us-west-2

What could go wrong: Several nodes

● What if all nodes go down?
● Some nodes go down: all good?
● DELETE FROM users;
● DROP TABLE users;

postgres

postgrespostgres

us-east-1

us-west-2

What could go wrong: Several nodes and backups

postgres

postgrespostgres

us-east-1

us-west-2

BackupsS3 bucket

What could go wrong: Several nodes and backups

postgres

postgrespostgres

us-east-1

us-west-2

S3 bucket Restore?

Schrödinger’s Backup:
“The condition of any backup is

unknown until a restore is
attempted.”

—Spotlight on IT series #212,
Spiceworks 2013

https://community.spiceworks.com/t/schrodinger-s-backup-when-good-documentation-goes-bad/225024

Backup failures that I have witnessed in prod

1. Backups just weren’t happening

🤖😴

Backup failures that I have witnessed in prod

1. Backups just weren’t happening
2. “Successful” backups in s3 that are just an empty file

👍✅ 🗑 👀‼

Backup failures that I have witnessed in prod

1. Backups just weren’t happening
2. “Successful” backups in s3 that are just an empty file
3. 😱 Looked good, but postgres never finished starting…

🤖❄

How do we test restores?

2/5

Bring up a streaming replica

(new)
postgres

(new)
postgres

(new)
postgres

postgres

3
$PGDATA
└── base

WAL21

Step 0: Bring up infrastructure

Step 0: Bring up infrastructure

● A lot of failures happen here
● Great news!
● Your backups might still be valid

Step 1: restore $PGDATA snapshot

pgbackrest restore [args]

(new)
postgres

$PGDATA
└── base1

Step 1: restore $PGDATA snapshot

1

Step 1.5: Set up configs

● postgresql.conf
● pg_hba.conf
● TLS (ssl_cert_file, ssl_key_file, ssl_ca_file)

Step 2: Replay WAL to catch up

Start postgres

(new)
postgres

WAL2

Aside: the role of WAL

2.5/5

Write-Ahead Log (WAL)

INSERT INTO users(id, name)
VALUES (1, “Nick”);

Write-Ahead Log (WAL)

shared memory
(shared_buffers)

To: client

OK, I committed
the transaction

1

WAL file2

3

Write-Ahead Log (WAL) -> “Checkpointing”

postgres
$PGDATA
└── base

Last
checkpoint

Current
time

WAL

Write-Ahead Log (WAL)

shared memory
(shared_buffers)

To: client

OK, I committed
the transaction

1

WAL file2

3

4 WAL file

archive_command

</aside>

2.5/5

Step 2: Replay WAL to catch up

Start postgres

1. Needs to reach “initial consistency”
a. The snapshot of $PGDATA is not useful

without WAL from start to finish

2. Catches up with all WAL written
after the backup finished

(new)
postgres

WAL2

Step 2: Replay WAL to catch up

● Look for the “slopes of catching up”
○ This comes after initial consistency is reached

(Reaching
Consistency)

Step 3: Start replicating

● primary_conninfo
● Replicate without error: good sign
● This is (probably) enough

(new)
postgres

postgres

3

Step 4: Spot-check some data

● “heartbeats” table good for this
○ You can watch it update

(new)
postgres

postgres

4

If this is not a drill, skip steps 3 and 4

● Hopefully you tested restores

(new)
postgres

postgres

Application

What goals should we set?

3/5

RPO and RTO

● How much data loss?

➢ Recovery Point Objective (RPO)

● How long until we’re back?

➢ Recovery Time Objective (RTO)

Recovery Point Objective (RPO)
RPO: 4 hours of data
loss “acceptable”

Sunday Monday

02:0000:0022:0020:0018:00 06:0004:00 10:0008:00

Everything is ok… Still ok… The Future

Current timeLast restorable point

Recovery Point Objective (RPO)

Sunday

02:0000:0022:0020:0018:00 06:0004:00 10:0008:00

Everything was ok Data loss Outage Now ok (but lost some data)

Disaster

Monday

Last restorable point

Recovery Point Objective (RPO)

Sunday

02:0000:0022:0020:0018:00 06:0004:00 10:0008:00

Everything was ok Data loss Outage Now ok (but lost some data)

Disaster

Monday

Last restorable point

Recovery Time Objective (RTO)

Sunday

02:0000:0022:0020:0018:00 06:0004:00 10:0008:00

Everything was ok Data loss Outage Now ok (but lost some data)

Disaster

Recovery time

Monday

Last restorable point

Point-in-time Recovery (PITR) with WAL

02:0000:0022:0020:0018:00 06:0004:00 10:0008:00

Everything was ok WAL records Outage Now ok (minimal/no data loss)

Disaster

Recovery time

Better recovery point

Last backup

Sunday Monday

WAL

Physical vs Logical

$PGDATA
└── base

└── 16388
 └── 1247

0100100001101001…

pg_dump

SELECT … FROM users WHERE …
INSERT INTO users VALUES …

logical

physical Write-ahead log

Physical vs logical

● Backups are faster, more frequent
● WAL => better RPO, continuous PITR
● Restores are faster => better RTO

“Super physical”

logical

physical

“super
physical”

postgres

ZFS

LVM

EBS
snapshots

Filesystem /
block device
snapshots

Physical vs “super physical”

● “Super physical”: can use with e.g. MySql too
● Physical: Less fragile

○ CREATE TABLESPACE …
● Better postgres tooling for physical
● Physical has PITR, does “super physical”?

● For a 15 TB DB @ Academia:

Some of our specific numbers

Objective Target

Recovery Point Everything*

Recovery Time 6 hours**

Point-in-time 1 month

* Allowance for several seconds to several minutes
** Multiply by 3 in full disaster (restore from nothing)

Holding ourselves
accountable

4/5

How to make sure we test restores

1. Every time you need a new replica, use your backups
a. If you never/rarely need new replicas, bring one up for fun

2. When you need to test, bring up a copy in staging
a. Restore some point in time other than latest

Business need #1: Need for reads

1. Every time you need a new replica, use your backups
a. If you never/rarely need new replicas, bring one up for fun

➢ When backups break:
✓ You will notice
✓ Fixing will be a priority

(new)
postgres

(new)
postgres

1

postgres
replication

restore

2

Business need #2: QA

2. Bring up a copy of prod in a staging environment
a. Restore some point in time other than latest

➢ Confirm:
✓ You can restore from nothing
✓ You can restore earlier points in time

How often?

0 -> once

once -> yearly

yearly -> monthly

(etc)

Monitoring

5/5

Good monitoring

Loud when it needs to be

🚨: 📣🔊

Great monitoring

Quiet the rest of the time

✅: 🤫😴

How to notice when restores are failing?

● Alerts?
● Dashboards?

Slack bot (failure)

Slack bot (success + recovery time)

~6 hours

The search for leading indicators

● Restores are what we care about
● Broken restores = lagging indicator of broken backups
● Are there any leading indicators to monitor?

pgbackrest info command: pipe to head

postgres@host $ pgbackrest info | head
stanza: news

status: ok
cipher: [value]

[...]

��

pgbackrest info command: pipe to tail

postgres@host $ pgbackrest info | tail

[...]

 full backup: 20240309-181002F

 timestamp start/stop: 2024-03-09 18:10:02 /
2024-03-09 18:10:45

 wal start/stop: 00000002000003D1000000BB /
00000002000003D1000000BB

 database size: 2.9GB, database backup size: 2.9GB

 repo1: backup set size: 696.8MB, backup size: 696.8MB

Check S3: is anything there?

✅

WAL archiving stats: throughput, failures

WAL archiving stats: throughput, failures

WAL archiving stats: throughput, failures

Why is this non-zero?
archive-async is complicated…

Recap

6/5

Summary

● Every time you need a replica, use your backups
○ “Bring up the infrastructure” is what usually fails

● Periodically test a cold-restore in QA/staging
● Visualize the restore process
● Make sure your monitoring pulls its weight

Summary

● Every time you need a replica, use your backups
○ “Bring up the infrastructure” is what usually fails

● Periodically test a cold-restore in QA/staging
● Visualize the restore process
● Make sure your monitoring pulls its weight

Questions?
https://github.com/aristocrates

https://github.com/aristocrates

Appendix

7/5

(There’s definitely no time for this, but if you’re
reading this after the conference, enjoy!)

Sidenote: streaming replication

● This talk assumes some familiarity with:
○ Streaming replication in postgres

■ “Binary compatibility”
■ Read-only replicas, HA replicas

○ The Write Ahead Log (WAL)
■ (at a high level)

● Some resources:
○ pgBackRest User Guide
○ Dude, where's my byte? | SCaLE 17x

■ (recording, youtube)

postgres

postgres

$PGDATA
└── base

└── 16388
 └── 1247

0100100001101001…

https://pgbackrest.org/user-guide.html#concept
https://www.socallinuxexpo.org/scale/17x/presentations/dude-wheres-my-byte
https://www.youtube.com/watch?v=ciUSdnWRSrk&t=19010s

“Replication heartbeats”

8/5

replication_heartbeats

● Sometimes the built in Datadog metric has issues
○ (Not always recognized until the first time a replica catches up)

● So we have a secondary system to fill in the gaps

replication_heartbeats

CREATE TABLE public.replication_heartbeats (

 created_at TIMESTAMP WITHOUT TIME ZONE PRIMARY KEY DEFAULT now()

);

● Cron job to insert the current time
● Metric: diff against replica system time
● Sloppiness aside…

○ time zones
○ NTP point of failure

● … it works pretty well in practice

replication_heartbeats

replication_heartbeats

